

The Caribbean Tsunami Warning System

Christa G. von Hillebrandt

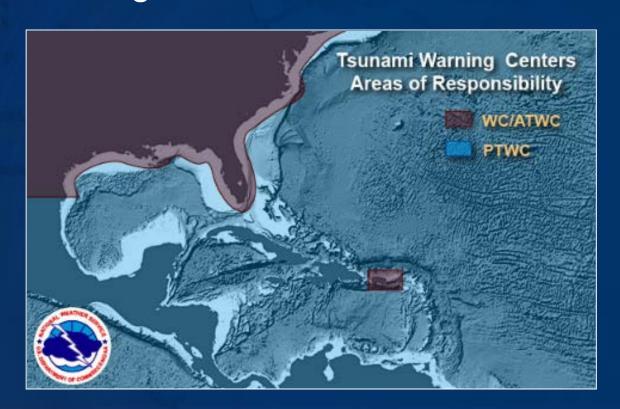
Manager, Caribbean Tsunami Warning Program

Chair, ICG/CARIBE EWS

CRRT San Juan, PR August 8, 2013

1500-2013 Tsunami Events in the Caribbean

Risk to Life and Economic Prosperity
For example: Port at Charlotte Amalie Bay, St.
Thomas, USVI.


20 Foot tsunami, November 18, 1867

30 people lost their lives on November 18, 1867 in a 20 ft tsunami.

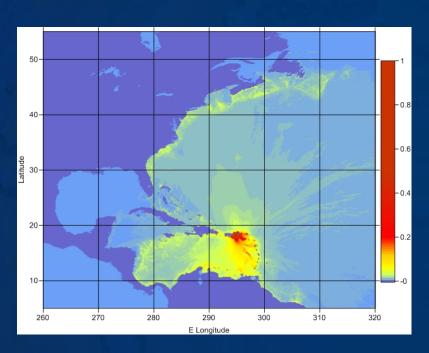
Same bay in St. Thomas today with the lives of 25,000+ tourists & residents at risk! 80% of jobs and Gross Territorial Product are Tourism Dependent

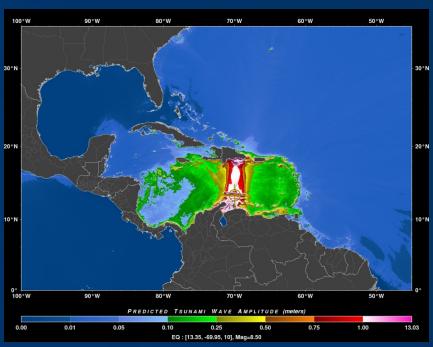
Tsunami Alerts are currently provided for Puerto Rico and the Virgin Islands by NOAA NWS WCATWC (Alaska) and for the rest of the Caribbean by NOAA NWS PTWC (Hawaii). Nicaragua and PRSN also provide tsunami warning services.

CTWC

"Providing regional service, strengthening local capabilities..."

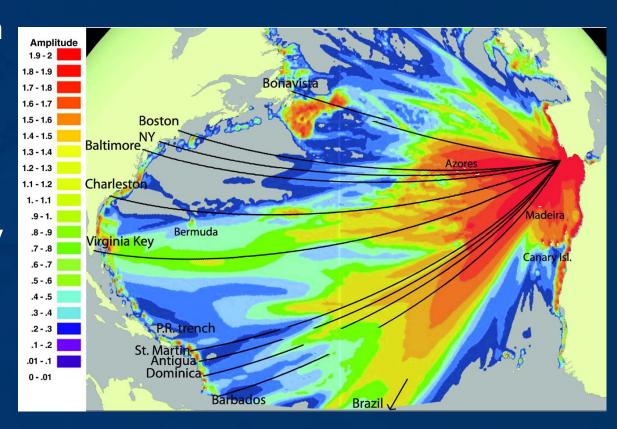
- NOAA NWS established in February 1, 2010 the Caribbean Tsunami Warning Program, jointly located at the Puerto Rico Seismic Network at the University of Puerto Rico at Mayagüez as a 1rst step of the U.S. towards the establishment of a Caribbean Tsunami Warning Centre.
- Currently staffed by Manager (Christa G. von Hillebrandt-Andrade) and Part time students
- ICG VI endorsed the establishment of the CTWC in Puerto Rico and has urged the US to continue with full implementation

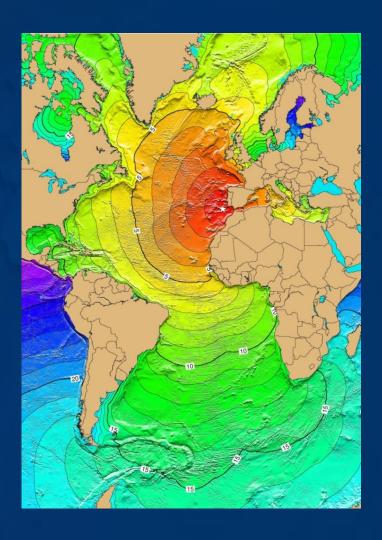




TSUNAMI EXERCISE CARIBE WAVE LANTEX 2011 AND 2013 (March 20, 2013)

2011 Scenario


2013 Scenario

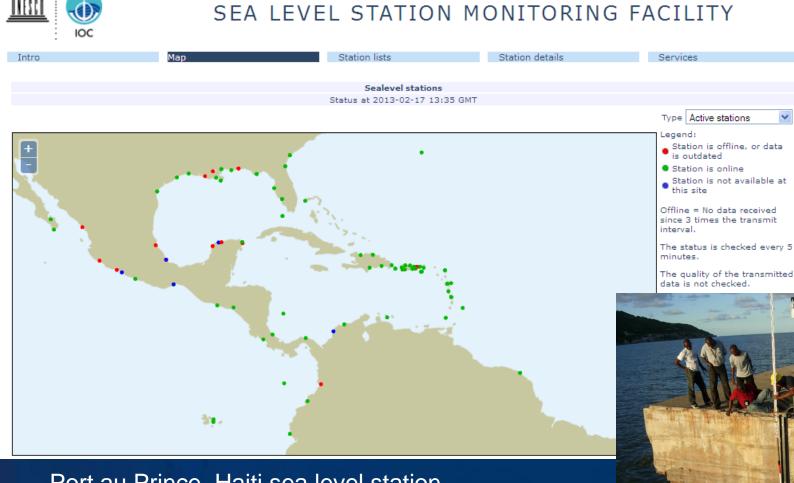


CARIBE WAVE/LANTEX 14

- Wednesday, March 26, 2014
- Lisbon 1755Scenario
- Start messages to be disseminated by PTWC and WCATWC

Tsunami Travel Times

Tsunami Event


0-1-						Tsuna	mi Cause		T	Tsunami Parameters					
	Date Tsunami Source Location Max Magnitude							nitude	T						
Year	Мо	Dy	Hr	Mn	Sec	Val	Code	Country	Name	Latitude	Longitude	Water Height	Abe	Iida	Tsu Int
1755	11	1	9	30		4	1	PORTUGAL	LISBON	36.000	-11.000	30.00		3.60	

Tsunami Runups

Tsunami Kunups																				
		Tsunami Runup Location									Wav	e Arriv	al		Tsun	Tsunami Runup Measurements				
Addi								Initial Wave					x W	ave	Max	Max				
	Doubt-	oubt-					Distance				rave Time	, ا	Arrival							
	ful		Province/				from	Day Hr Min I				_				Inundation			1st	
	Runup	•	Prefecture	Name		Longitude	Source	Day	Hr N	_	-	n Day	Hr	Min	_		Туре	Per		
*		ANTIGUA AND BARBUDA		ANTIGUA ISLAND	17.12000	-61.78000	5401	<u> </u>	ᆜ	!	<u> </u>	<u> </u>	Ļ	<u> </u>	3.70		1	Ļ	R	
*		BARBADOS		CARLISLE BAY, BARBADOS	13.08300	-59.61700	5467								1.50		1	5	R	
*		BERMUDA		BERMUDA	32.36700	-64.70000	4895										1			
*		BRAZIL		BRAZIL (unknown location)													1			
*		CANADA	NL	CAPE BONAVISTA, NEWFOUNDLAND	48.70000	-53.08300	3680										1			
*		CUBA		SANTIAGO DE CUBA	20.00000	-75.81700	6492										1			
*		DOMINICA		PORTSMOUTH	15.56700	-61.45000	5468								3.70		1			
*		DOMINICAN REPUBLIC		SAMANA BAY	19.21700	-69.31700	5952						abla		3.70		1			
*		DUTCH TERRITORY		SABA ISLAND	17.63300	-63.10000	5487						abla		6.40		1	1		
*		FINLAND		TURKU	60.45000	22.25000	3596						abla				7			
*		FRANCE		BORDEAUX	44.83300	56700	1319						abla				7			
*		FRANCE		LEHAVRE	49.50000	.10000	1750						abla				7			
*		HAITI		PORT-AU-PRINCE	18.55000	-72.33300	6261						abla				1	1		
*		IRELAND		CORK, IRELAND	51.75000	-8.25000	1765										7			
*		IRELAND		KINSALE, IRELAND	51.70000	-8.53300	1757						Т				1			
*		MARTINIQUE (FRENCH TERRITORY)		MARTINIQUE	14.74000	-61.18000	5496								1.80		1	1	F	
*		SAINT MARTIN		SAINT MARTIN HARBOR	18.08300	-63.08300	5459		T						4.50		1	1		
*		SAINT VINCENT AND THE GRENADINES		LESSER ANTILLES	12.00000	-62.00000	5747								4.50		1			

Sea Level Data Availability in the Caribbean

100% (6/6) of the DART stations are installed 44% (44/100) of coastal sea level gauges are operational and transmitting at least every 15 minutes

Port au Prince, Haiti sea level station, installed in 2012

Tsunami Modeling

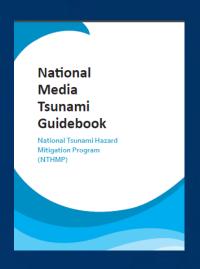
- USA Puerto Rico, near, regional, tls and landslide sources
- France
- Haiti north shore by France
- BVI-new bathymetry and near coastal data was gathered
- Dominican Republic lack of bathymetry data
- Need for additional training and digital elevation models with appropriate resolution.

Caribbean Tsunami Information Center

- The Government of Barbados is hosting the Center
- Initial funding from the Government of Italy thru Tsunami Unit and UNDP Office for the Organization of Eastern States and Barbados
- Interim Director is in the process of being hired
- Focus on SOP's and Educational and Awareness materials

TsunamiReady© Recognition Program (US NWS AND USNWS/UNESCO)

- 31/44 communities in Puerto Rico 1/40 Caribbean nations/territories
- 24 Hour Focal Point to receive and disseminate tsunami messages
- Tsunami Evacuation Map
- Tsunami Signage
- Tsunami evacuation exercise
- Tsunami response plan
- Average Investment: \$40,000
- Puerto Rico Govt. is tying in the maintenance of TsunamiReady status to Emergency Planning Funding



Standard Operating Procedures

- Developed for Barbados, Grenada, Antigua & Barbuda, St Lucia and Anguilla
- Being developed for Haiti
- Puerto Rico Seismic Network updated its SOP's and also developed a Tsunami Media Guide for Puerto Rico with the NWS and National Tsunami Hazard and Mitigation Program.
- USVI also has a Tsunami Annex, being updated as part of the TsunamiReady recognition process

Preparedness Materials Maritime Community

Tsunami Protocol Template for the Caribbean Port and Harbor Operators

UPRM Puerto Rico Seismic Network, NOAA NWS Caribbean Tsunami Warning Program, National Science Foundation

INTRODUCTION

Tsunami (soc-NAH-cas) is a Japanese word meaning harbor wave. A tsunami is a series of waves with a long wavelength and period (time between crests) generated by a large, impulsive displacement of sea water. Time between crests of the wave can vary from a few minutes to over an hour, but generally are in the range of 15 to 25 minutes. Tsunamis are often incorrectly called tidal waves; they have no relation to the daily ocean tides, although depending on the stage of the tide, the tsunami will reach a higher or lover elevation. Tsunamis are generated by any large, impulsive displacement of the sea level. The most common cause of a tsunami is sea floor uplift associated with an earthquake. Tsunamis are also triggered by landsiliose into or under the water surface, and can be generated by volcanic activity and meteorite impacts.

available at: http://www.srh.noaa.gov/srh/ctwp/ and http://prsn.uprm.edu

SUNAMI

WHAT TO DO?

TSUNAMI SAFETY FOR BOATERS

- Since tsunami waves cannot be seen in the open ocean, do not return to port if you are at sea and a tsunami warning has been issued. Port facilities may become damaged and hazardous with debris. Listen to mariner radio reports when it is safe to return to nort.
- 2. Tsunamis can cause rapid changes in water level and unpredictable dangerous currents that are magnified in ports and harbors. Damaging wave activity can continue for many hours following initial tsunami impact. Contact the harbor authority or listen to mariner radio reports. Make sure that conditions in the harbor are safe for navigation and berthing.
- 3. Boats are safer from tsunami damage while in the deep ocean (>200 fathoms, 1200 ft, 400 m) rather than moored in a harbor. But, do not risk your life and attempt to motor your boat into deep water if it is too close to wave arrival time. Anticipate slowdowns caused by traffic gridlock and hundreds of other boaters heading out to sea.
- For a locally-generated tsunami, there will be no time to motor a boat into deep water because waves can come ashore within minutes. Leave your boat at the pier and physically move to higher ground.
- For a tele-tsunami generated far away, there will be more time (one or more hours) to deploy a boat. Listen for official tsunami wave arrival time estimates and plan accordingly.
- Most large harbors and ports are under the control of a harbor authority and/or a
 vessel traffic system. These authorities direct operations during periods of increased
 readiness, including the forced movement of vessels if deemed necessary. Keep in
 contact with authorities when tsunami warnings are issued.

Centro Internacional de Información sobre Tsunami
737 Bishop St., Manka Tower Suite 2200
Honolula, Hawaii 98313-3213 USA
Tel. < > 1 (2018) 232-6422 Fax: < >> (2018) 532-5576
Corroo elextónico (6-mail): titic tsunami@unesco.org
Página electrónica http://tsunamiswise-info
Ilastración por Lucas Rawah, Papua, Nueva Gainea, 1998
Traducción al español: María E. Font, UPPR Sea Grant
Red Sismica de Puerto Rico
Universidad de Puerto Rico em Mayagüez
Tel. < > (787) 833-8433
Corroo electrónico (6-mail): staff@midas upra edu
Página electrónica: http://redsismica.upran.edu

Pending Actions/Strengthening Activities

- Testing of new tsunami products from the PTWC
- Establishment of a Caribbean Tsunami Warning Center in the region
- Consolidation and recurrent funding/seconding for CTIC, including Public Awareness and Education Strategy
- Strengthening and development of SOP and Preparedness Plans
- Annual regional tsunami exercises
- Coordination with NEAMTWS

If we let infrequency of Earthquakes and Tsunamis disarm us, DISASTER will strike again

Indian Ocean 2004

Haiti 2010

Photo Credit: Hermann Fritz


27

Caribbean Tsunami Warning Program

"Protecting lives and securing economic prosperity in the Caribbean and Western Atlantic"

Programa de Alerta de Tsunamis del Caribe

"Protegiendo vidas y salvaguardando prosperidad económica en el Caribe y Atlántico Occidental" http://www.srh.noaa.gov/srh/ctwp/