

Worker Safety and Health Management During the BP Oil Spill: Exposure Assessment and Monitoring

Todd Jordan, MSPH, CIH
Director, USDOL/OSHA Health Response Team

2010 Worker Safety and Health Technical Conference
October 2010

OSHA Activities

- Ensure that workers have safety and health training and protections necessary to avoid injuries and illnesses
 - Technical Assistance to UC and Agencies
 - Conduct Interventions
 - Develop and implement exposure assessment and sampling strategy

OSHA Worker Exposure Assessment and Sampling Activities

- Information collected on employers, workers, and work tasks (standard form)
 - Hazards
 - PPE
 - Controls
- Sampling Strategy
 - Three (3) work zones
 - Sixteen (16) specific work tasks

Potential Sampling Tasks

- Manual scraping
- 2. Sump and pump/vacuum
- 3. Manual removal of oil materials
- 4. Low pressure flushing
- 5. Manual sorbent application
- 6. Manual cutting
- 7. In-situ burning
- 8. Vacuum truck, vacuum pumps, portable skimmers

- 9. Oil mop
- 10. Recovery of oil from groundwater
- 11. Marsh-non shore cleanup operations (SCAT)
- 12. Skimming
- 13. High pressure cleaning
- Manual removal of solid tar balls
- 15. On shore support
- 16. Float support
- 17. Other

Shore Cleanup

- Tar ball removal
- Oiled sediments, vegetation, and debris removal
- Manual sorbent application and removal
- Pollution investigation
- Sump & pump/ vacuum trucks

Vessel Booming & Skimming

- On-water operations
- Various skimming techniques
- Oil patrols
- Environmental sampling
- Boom application, removal, tending

Vessel Booming & Skimming

In-Situ Burning

- On-water destruction of "fresh" oil
- Upwind end of contaminated area ignited and allowed to burn to down-wind end

Decon

- Vessel decon
- Boom decon
- Equipment decon
- High and low-pressure washing

Decon

Decon

IH Sampling

- Chemical Exposure Assessments
 - Oil
 - Dispersants
 - Cleaning agents
 - Combustion products
- Physical Hazard Assessments
 - Noise
 - Heat

IH Sampling – Direct Reading and Integrated

Personal Samples

- Breathing zone
- Sample results cards provided to workers
- Area Samples
 - Areas frequently occupied by workers
- Special Samples (characterization)
 - Bulks (air, solid, liquid)
 - Worst case

Sampling Methods

Sample	Method	Media	Comments
VOC-Diffusive (BTEX, etc.)	OSHA 1005	SKC 575-002 Diffusive Sampler	Crude oil
VOC-Active (BTEX, etc.)	OSHA 1005	SKC 226-01 Charcoal Tube	Crude oil
Petroleum Distillates	OSHA 48	SKC 226-01 Charcoal Tube	Crude oil
Heavy Aliphatics & Aromatics	Qualitative GC/MS	SKC 590-100 Ultra I Sampler	Crude oil
Propylene Glycol	OSHA PV2051	SKC 226-57 XAD-7 OVS Tube	Dispersant
2-Butoxyethanol	OSHA 83	SKC 575-002 Diffusive Sampler	Dispersant (prior to 5/2010)

Sampling Methods

(continued)

Sample	Method	Media	Comments
Formaldehyde	OSHA 1007	Assay Tech ChemDisk	In-situ burning
Oil Mist	PC2121	PVC Filter	Decon/pressure washing (initial sampling)
Glycol Ethers (2-butoxyethanol)	OSHA 83	SKC 226-01 Charcoal Tube	Decon cleaning agent
Benzene Soluble Fraction	OSHA 58	Glass Fiber Filter	Decon/pressure washing

Direct Reading Methods

- VOC: Photo-ionization detector (PID)
- 4-gas: CO, H2S, %LEL, %O2
- Benzene, Toluene, Xylene, TPH, NH3: CMS/Detector Tubes
- Noise: SLM, Dosimeter
- Heat Stress: WBGT Meter

Heat Stress

- Prevalent among all operations
- Extremely hot, humid conditions
 - Avg. maximum Heat Index values ranged between 99-117 °F, May-September
- Comprehensive heat stress program implemented
- Stringent work/rest cycles utilized
 - Example: 20 minutes on, 40 minutes off for extreme conditions
- Shaded and/or air-conditioned rest areas
- Medical monitoring
- Water and sports drinks readily available for hydration
- First aid/removal from work if symptoms occur

Personal Protective Equipment

- PPE programs were reviewed and guidance provided
- Respirators not required, with the exception of:
 - Operations at the source (respirators used according to direct reading measurements)
 - In-situ burning (escape respirators available if necessary, rec. by NIOSH)
- PPE used mainly for skin protection
- Necessary to balance PPE requirements with heat stress issues

Sample Results

- Sampling Information Posted on OSHA Website
 - Sample Strategy

Sample Results

work and life

Lessons Learned

- UC response allows S&H professionals to provide "higher" levels of protection
 - Use of "best" OEL vs. outdated PEL
 - HASP
- Good coordination of IH sampling activities on an on-going basis w/ BP, contractors, USCG, NIOSH, EPA, etc.
- Use diffusive samplers whenever possible
 - Less manpower needed to collect samples
 - Less disruptive to workers
- Improved coordination between laboratory and field personnel
 - Ensure sampling times (volumes) adequate to ensure reporting limits are below appropriate OEL
- Improve coordination between field personnel and data management personnel
 - Quicker feedback of sampling reports to field planners

Todd Jordan, MSPH, CIH Director, OSHA Health Response Team

Salt Lake Technical Center 8660 S. Sandy Parkway Sandy, UT 84070

Jordan.Todd@dol.gov 801-233-4916

