Hantavirus

Agent Characteristics

Agent Classification: Biological Type: Virus Family: Bunyaviridae Genus: Hantavirus, Hantaan virus, Seoul virus, Puumala virus, Sin Nombre, the virus first isolated from the Four Corners of the Southwestern U.S., Andes virus, and Dobrava-Belgrade virus

Description: There are two primary diseases caused by the various viruses. Hantavirus Pulmonary Syndrome (HPS) (sometimes called Hantavirus Cardiopulmonary Syndrome [HCPS] when deaths are caused by cardiogenic shock) is primarily found in North and South America (Andes virus) and primarily affects the pulmonary system. Hemorrhagic Fever with Renal Syndrome (HFRS) affects the kidneys and is primarily found in Asia (Hantaan virus), Scandinavia (Puumala virus), Balkans (Dobrava-Belgrade virus) and Worldwide (Seoul virus). Both HPS and HFRS, though rare, have occurred in the United States. Transmission of the naturally occurring diseases is either by the bite of infected rodents or via aerosolization of the virus from rodent urine, feces, saliva, and nesting materials. In a bioterror event, humans may contract the disease by breathing aerosolized virus.

Bio-Safety Level: 4

CDC Category: C
HHS Select Agent: No
Incubation Period: 1-5 weeks, with 8 weeks for some cases of HFRS causing HFRS.
Person-to-Person Transmission: Yes, contact with infected bodily fluids or excreta of live or dead victims (e.g., Andes, etc.)

Other Forms of Transmission:

- Yes, contact with infected fluids or excreta of live or dead non-human hosts.
- **Treatments:** NO VACCINE AVAILABLE; treatment is supportive.
- **Infectivity/Lethality:** HPS: High; HFRS: Moderate
- **Persistence/Stability:** Known to persist in bodily fluids or excreta of live or dead host for extended periods. Hantavirus persistence is affected by types of environmental matrices and intentional stabilization (i.e., weapons-grade).
- **Primary non-human host:** Rodent

Release Scenarios

CAUTION: REAEROSOLIZATION OF THE VIRUS IS DEPENDENT UPON THE AERODYNAMIC PROPERTIES OF THE CONTAMINATED MEDIA (BODILY FLUIDS, EXCRETA, ENVIRONMENTAL MATERIALS). ALL MEDIA SHOULD BE CONSIDERED A REAEROSOLIZATION CONCERN.

Air/Aerosolization: Hantavirus, in nature, is spread via aerosolization. In a bioterror event, Hantavirus may be engineered to be even more aerosolizable. Its reaerosolization ability will depend upon the size & physical properties of the contaminated matrix in which it resides and may quickly lead to the virus spreading throughout a building & surrounding areas. Hantavirus can be released indoors and outdoors. An outdoor release of Hantavirus has the potential to travel from the immediate area, increasing the scope of the response.

Soil/Surfaces: Hantaviruses can survive on surface & in soil.

Water: Hantaviruses may survive in water.

Other: Hantaviruses are naturally occurring and endemic throughout the world.

Health Effects

Onset

CAUTION: HANTAVIRUSES ARE INFECTIVE VIA ALL EXPOSURE ROUTES

Symptoms of HPS typically occur 1-5 weeks after exposure. Symptoms of HFRS typically occur up to 8 weeks after exposure.

Signs/Symptoms per Exposure Route

General: Two clinical syndromes are associated with exposure to Hantavirus: hemorrhagic fever with renal syndrome (HFRS) and cardiopulmonary syndrome (HCPS). Initial symptoms for both syndromes are similar and include flu-like symptoms such as fever, headache, muscle aches, abdominal pain, nausea, rapid heartbeat and decrease in blood pressure and heart efficiency. In HFRS there is an excessive production of urine and kidney failure. With HFRS individuals develop difficulty in breathing, coughing, and shortness of breath which can progress to an acute cardiopulmonary phase leading to cardiovascular shock.

Personal Safety

PPE

- **CAUTION:** UNTIL SAMPLING CONFIRMS THE VIRAL AGENT WON'T OR CAN'T BREAKTHROUGH EITHER A P100 OR HEPA FILTER, RESPONDERS SHOULD USE A SELF-CONTAINED BREATHING APPARATUS (SCBA) FOR RESPIRATORY PROTECTION

Emergency Response to a Suspected Viral Incident

Possible PPE Levels for emergency responders is based on scenario risks from highest level of protection to least: 1) Pressure-demand Self Contained Breathing Apparatus (SCBA) with Level A protective suit, when: a) Event is uncontrolled, b) Viral agent is airborne or aerosolizable, c) Dissemination method is unknown, d) Performing decontamination and washing of workers in Level A protective suits because of an airborne or aerosolizable viral agent. 2) Pressure-demand SCBAs with Level B protective suit, when: a) The viral agent is no longer a reaerosolization threat but the viral agent's breakthrough ability for P100 or HEPA filters is not known, b) Response operations may cause a splash hazard. 3) Full-face piece respirator with P100 filter or PAPR with HEPA filters, when sampling confirms the viral agent won't or can't breakthrough the P100 or HEPA filter: 4) Disposable hooded coveralls, gloves, & foot coverings, when there is NO threat of airborne release or reaerosolization of the viral agent.

Other Workers: PPE recommendations for workers other than emergency responders must be developed in the HASP for the specific scenario. PPE recommendations will vary by job type (e.g., cleanup, decon, etc.), type of exposure (e.g., airborne or surface/liquid/solid hazard), & any other site hazards (e.g., chemical, physical, etc.).

Fixed and Portable Aerosol Monitoring

No field detection methods are currently employed.

Sampling

CONCERNS: BEFORE OBTAINING SAMPLES: Identify sample transportation requirements; Contact EPA/HQ-EOC (202-584-3850) for ERLN contract laboratories able to analyze these types of samples; Clearly identify & coordinate with the laboratory to be used since most labs cannot analyze all types of media (e.g., tissue, filters, etc.). Coordinate with the sample disposal facility for sample chain of custody and acceptance criteria (i.e., sample decon requirements); Coordinate with investigative units (EPA-CID & FBI) to ensure sample chain of custody is maintained between the groups. **Note:** Sampling techniques, analytical equipment and detection levels will be site-specific & depend on: 1) characteristics of the agent; 2) type of contaminated surfaces (e.g., porous v. nonporous); 3) response phase & purpose of sampling; 4) collection and storage methods applied; 5) transportation regulations; 6) laboratory sample acceptance criteria; 7) decon requirements of sample waste disposal facility.

CAUTION: HEPA EQUIPMENT IS NOT RECOMMENDED UNTIL PROVEN EFFECTIVE IN FILTERING PARTICLES AS SMALL AS VIRAL SIZE

Sampling Location Plans

If the initial point of contamination is known, start with an area thought to be free of contamination & work in concentric circles towards the initial point of contamination. Be concerned about likely contaminated areas (e.g., elevator buttons, mail, corners of hallways, baseboards, light switches, door knobs) due to foot traffic or ventilation systems. This virus can infect humans & animals. Note areas where non-human hosts may have frequented, since their movement may have affected the extent of contamination. Based on site characteristics & laboratory capacity, sampling plan may be judgmental, probabilistic, or a combination thereof.

NRT Quick Reference Guide: Hantavirus

For reference, please see "Key References Cited/Used in National Response Team (NRT) Quick Reference Guides (QRGs) for Viral 2012 Revision."

QRGs are intended for Federal On-Scene Coordinators (OSCs) and Remedial Program Managers (RPMs).
<table>
<thead>
<tr>
<th>Section</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decontamination/Cleanup</td>
<td>CAUTION: HEPA EQUIPMENT IS NOT RECOMMENDED UNTIL PROVEN EFFECTIVE IN FILTERING PARTICLES AS SMALL AS VIRAL SIZE</td>
</tr>
<tr>
<td>Decon/Cleanup Planning</td>
<td>Site-specific decon/cleanup plan should be developed & approved by all necessary organizations/SMEs via ICS channels. Responders should develop a plan that takes into account: 1) Nature of contamination including physical properties, how it entered the facility, etc.; 2) Extent of contamination, including the amount & possible pathways that have or could have spread the virus. It is advisable to isolate the contaminated area; & 3) Objectives of decon, including decon of critical items for re-use & the treatment, removal, or packaging of other items for disposal. Note: Crisis exemptions from EPA’s Office of Pesticide Programs might be necessary depending on decontaminating agents used.</td>
</tr>
<tr>
<td>WARNING: DECON SOLUTIONS SHOULD NOT BE DEPLOYED AS A SPRAY.</td>
<td></td>
</tr>
<tr>
<td>Decon Methods</td>
<td>Decon decisions will be site & situation specific but due to re-aerosolization concerns, under NO circumstances should ANY broom be used. EPA’s National Decon Team, call the NRT pager at 800-329-1841, can provide specific decontamination parameters & the requirements for using readily available commercial items such as household bleach. For large areas, low-tech cleanup methods most likely won’t be used – rather, widespread fumigation would be the most expedient & cost effective method selected. For small areas of contamination, discreet area decon methods would typically proceed as follows: allow aerosols to settle & wear protective clothing; gently cover any contaminated areas with paper towel(s) (overlapping each other if necessary) & apply decon solutions. HF viruses can be inactivated by the following decon solutions: 1) pH-amended bleach solution (i.e., 1 part household bleach, 1 part vinegar & 8 parts water); 2) a 70% aqueous solution of ethanol, & 3) a 5% aqueous solution of a phenolic germicidal detergent (e.g., industrial strength Lysol®). Apply the decon solution by starting at the perimeter & wet towards the center of the contaminated area. Ensure sufficient contact time (i.e., 60 minutes) is provided & ensure the paper towel is kept “sopping” wet during this time. Remove the paper towel(s) then wipe up the residual dampness/drops of pH-amended bleach solution until surface is dry. Reapply solution to the bare surface & wipe up immediately with more paper towel(s), then let surface air-dry. All contaminated decon materials (e.g., paper towels, etc.) should be appropriately treated & discarded as bio-hazardous waste.</td>
</tr>
<tr>
<td>Verification of Decon</td>
<td>Site & situation specific. Please contact ERT (732-321-6660) and/or NDT (800-329-1841) for further assistance.</td>
</tr>
<tr>
<td>Waste Disposal</td>
<td>CAUTION: Hazardous waste transportation & disposal are regulated federally; however more stringent regulations may exist under state authority. These regulations differ from state-to-state. Detailed state regulations can be found at www.envcap.org. Waste Disposal Planning: Waste generated from assessment & cleanup activities should be incinerated, autoclaved, chemically disinfected, or fumigated & then tested to be sure the agent(s) were inactivated. Waste disposal for agent-contaminated wastes generated from the decontamination & disposal activities will be problematic. Landfills willing to take these wastes may be limited & incineration may be prohibitively expensive or impractical. All waste disposal options should be investigated as early into the response process as possible. Transportation of the agent contaminated wastes from the site to the landfill or incinerator may be problematic as well. First, agreements must be reached between the waste sender & acceptor BEFORE transport, followed by timely public notification of the transport & disposal phases. Transportation of hazardous waste may cross several states and localities, which may exceed federal regulations. Requirements for transporting hazardous materials, & procedure for exemption, are specified in http://www.fmcsa.dot.gov/safety-security/hazmat/complyhmrregs.htm#hmp. The U.S. EPA has developed a web-based Incident Waste Management Planning & Response Tool which contains guidance related to waste transportation, contact information for potential treatment, disposal facilities, & state regulatory offices, packaging guidance to minimize risk to workers, & guidance to minimize the potential for contaminating the treatment or disposal facility. Access to the EPA’s web based disposal tool requires pre-registration (http://www2.ergweb.com/bdrtool/login.asp).</td>
</tr>
<tr>
<td>Sample Packaging & Shipping</td>
<td>The packaging & shipping of samples are subject to strict regulations established by DOT, CDC, USPS, OSHA, & IATA. Contact the sample-receiving laboratory to determine if they have additional packaging, shipping or labeling requirements. HF samples should be placed in an air-light container & kept at temperatures of 40-50°F (4-10°C).</td>
</tr>
<tr>
<td>Laboratory Information</td>
<td>Contact EPA/HQ-EOC (202-564-3850) for contract laboratories able to analyze these types of samples.</td>
</tr>
</tbody>
</table>